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Slide coating is a means of rapidly depositing multilayered liquid films of precise 
thickness and uniformity, as in manufacture of photographic products. Liquid is 
metered through one or more slots onto the inclined surface of the coating die, flows 
down that face and across a gap onto a fast-moving smooth surface. In this paper the 
steady, two-dimensional slide coating flow of a Newtonian liquid is analysed by 
solving the full NavierStokes system with the Galerkin/finite-element technique, 
spine parametrization of free surfaces and full Newton iteration. The lower meniscus 
in the gap is assumed to remain pinned a t  the die edge and the wetting-line 
singularity on the surface being coated is relieved by introducing dynamic-slip and 
contact-angle parameters. Results include the effects of several design and operating 
parameters on free-surface profiles and details of the flow field ; these are presented 
by means of contours of kinematic and dynamic variables and local force balances 
over subdomains. The profiles show standing waves on the slide, rapid film thinning 
just before the gap, and exponential approach to the final film thickness on the web. 
As Reynolds number is raised and/or web speed is lowered several recirculation 
regions are predicted, deleterious features that have also been detected in 
experiments. 

1. Introduction 
Coating is any process that replaces gas a t  a solid surface by a layer of liquid. 

Usually the layer is required to be thin, continuous, uniform in thickness or smooth 
at its free surface, and to remain that way until it can be solidified into a more or less 
permanent coating. Slide coating is the process in which liquid issues a t  premetered 
rate through one or more slots of an applicator die onto the inclined face of the die, 
flows laminarly as a film down that face and across a narrow gap onto a smooth- 
surfaced substrate that is translating rapidly at constant speed in its own plane : see 
figure 1. The substrate, a flexible ‘web’, moves on into a chilling, drying, or curing 
zone where the liquid on it is solidified. Slide coating is widely used in the continuous, 
high-speed manufacture of photographic, graphic arts, and X-ray films as well as 
other precision products. 

Colour photographic films and certain other products are based on multiple layers, 
each with a different function to perform. Provided the layers can be formed of 
miscible liquids, i.e. without interfacial tension between them, it may be possible to 
avoid multiple-pass deposition and solidification of successive layers and instead coat 
them simultaneously. If this is possible, the leading means is a multilayer or cascade 
coating die of the sort diagrammed in figure 1. The top surface is an inclined plane, 
called the slide, which is interrupted by narrow slots through which are carefully 
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FIQURE 1.  Multilayer slide coater system. 

pumped the liquid compositions of successive layers. Each turns and flows laminarly 
downward in a thin layer that successively encounters others formed in the same 
way. When the slots are properly designed, the oncoming liquid rides up onto each 
issuing layer without mixing (though with interdiffusion, a minor effect) so that a 
multilayer film is formed. This flows to the lower end, or lip edge, of the die and on 
into the ‘ coating bead ’ or ‘ coating meniscus ’ that bridges the narrow gap between 
the lip and the web being coated. The latter wraps a roller that is precisely positioned 
to maintain the gap. 

On the web side of the gap the liquid contacts, wets and coats the fast-moving 
substrate uniformly across its entire width, excepting unavoidable edge zones, or so 
it should in successful coating operations, and then the flow is steady and two- 
dimensional. A small vacuum is usually applied beneath the liquid bridge or coating 
bead in order to keep it stable at higher coating speed and perhaps higher viscosity 
and lower surface tension and wider gap than would otherwise be possible. This tactic 
was disclosed by Beguin (1954) in a landmark patent. Many variations of the basic 
configuration and lip shape have since been described (e.g. Russell, Wilson & 
Carleton 1956 ; Mercier, Torpey & Russell 1956 ; Jackson, Winkler & Woodworth 
1976; Choinski 1979; Isayama & Takehara 1981 ; Burket, Conaghan & Hirshburg 
1984; Hitaka & Namiki 1984). 

Three flow regions can be distinguished in the liquid flow of the slide coating 
process. The feed, or slide, region establishes a velocity distribution and a thickness 
distribution that are uniform in the transverse direction except for edge effects. The 
meniscus, or bead, region ensures the equality of the average rate at which liquid 
arrives at the lip and the average rate at  which it is picked up and carried away by 
the moving web. The film development, or web, region encompasses the approach of 
the film to fully developed flow, which would be plug flow at the substrate speed 
except for a small effect of gravity. 

Though this process is routinely used in the manufacture of photographic 
products, its steady flow and instabilities are still matters of controversy (aired at  the 
First Symposium on Fundamentals of Coating in Orlando, Florida in 1982). Strong 
nonlinearities contributed by the free surfaces even when inertia is small, and 
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apparent stress singularities at static separation lines and dynamic wetting lines 
make a fluid mechanical theory of slide coating flow a real challenge. Only recently 
have means been developed for efficiently making reliably accurate theoretical 
predictions of such complicated flows - excepting, perhaps, the neighbourhoods of 
dynamic apparent contact lines or wetting lines, where empirical parameters have to 
be employed as expedients (Kistler & Scriven 1983). 

Previous studies of slide coating systems are few. Faust (1075) working with J. A. 
Tallmadge investigated experimentally the shapes of the free surfaces and the 
influences of some operating variables on bead operability limits. Though she 
measured speed limits of several Newtonian liquids with different viscosities over a 
range of flow rates and gap widths, she applied no vacuum under the coating bead. 

In a precursor of the present paper Kobayashi, Saito & Scriven (1982) analysed a 
restricted set of slide coating flows by using the method of subdomains, free-surface 
parametrization by spines, local polynomial basis functions, isoparametric mapping, 
and Galerkin’s method of weighted residuals with Gaussian quadrature - altogether 
the Galerkin/finite-element technique. On the assumption that the lower meniscus of 
the coating bead pins to a sharpened lip, or edge of the coating die, they computed 
predictions of effects of changing a limited number of parameters on free-surface 
shapes and velocity fields. 

Galehouse & Colt (1984) worked out film-flow approximations for flow in the slide 
region and web region : they neglected inertial effects, balanced viscous force and 
capillary pressure gradient, and linearized the equations around the asymptotic 
regimes. For the vicinity of the dynamic wetting line they used a variant of Moffat’s 
(1964) corner flow model, as had Huh & Scriven (1971) originally. Galehouse & Colt 
found that their approximations matched measured profiles downstream in the web 
region but not upstream in the slide region. 

More recently, Bach & Hassager (1985) used a so-called Langrangian finite- 
element scheme, based on a succession of material coordinates, to attack several 
flows including a slide coating prototype. The scheme employs initial-value problems 
to arrive at  steady states and so is unsatisfactory for surveying those parts of a state 
space populated by unstable or nearly unstable steady states. For the vicinity of the 
dynamic wetting line Bach & Hassager used slip and excessively refined 
subdomaining, or gridding, in an attempt to match Moffat’s (1964) corner flow 
model. Comparable matching can be achieved through ‘singular’ elements, as we 
shall describe in a future publication. 

Hens & Boiy (1986) observed how the curvature of the upper meniscus of the bead 
region depends on several operating variables; they also put farward a simplified 
analysis of the growth of the boundary layer in the bead region downstream of the 
dynamic wetting line, an analysis paralleling Kistler’s (1984) of the same 
phenomenon in curtain coating flow. 

Schweitzer (1988) developed a technique for visualizing small-scale film flows. By 
using hydrogen bubbles, dye injection and optical sectioning, he was able to display 
the interior of the two-dimensional flow field of a slide coater via streamlines ; his 
photographs also displayed the shape of free surfaces including dynamic and static 
wetting lines and apparent contact angles. 

In the present paper we report a computer-aided theoretical analysis of steady, 
two-dimensional flow of Newtonian coating liquid through the three regions of a slide 
coater. The prototype system is diagrammed in figure 2. It consists of a single liquid 
layer of uniform viscosity, density, and surface tension being coated onto the surface 
of a perfectly flat web (extension to multiple layers is straightforward with 
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FIQURE 2. Prototype slide coater and flow parameters. 

streamline elements (Kistler & Scriven 1983 ; Papanastasiou 1984). Steady states of 
this system are described by solutions of a non-standard elliptic boundary-value 
problem: parts of the boundary are free and parts are synthetic boundaries with 
upstream and downstream regions that are most efficiently treated as obeying 
approximate equations. We solved the compound problem by a Galerkin/finite- 
element method, which leads to a large set of algebraic equations, many of them 
nonlinear. We used Newton iteration with continuation to solve all the equations 
simultaneously for the shapes of the free surfaces, the velocity field and the pressure 
field. Newton iteration offers not only rapid - though local - convergence but also 
potent byproducts. Its Jacobian matrix can be used to detect loss of the two- 
dimensional, steady solution as parameters are varied, and appearance of multiple 
two-dimensional steady-state solutions (i.e. turning points and certain kinds of 
bifurcations). It has other uses as well (Brown, Scriven & Silliman 1980). 

Section 2 compiles the governing equations. Section 3 summarizes the derivation, 
linearization, and analytical solution of one-dimensional, asymptotic film profile 
equations for upstream flow on the slide and downstream flow on the web. The results 
are predictions of standing waves on the slide and an exponential approach to the 
final film thickness on the web; they provide natural boundary conditions for the 
Galerkin/finite-element formulation of the two-dimensional flow in the bead region 
and nearby. Section 4 describes that formulation and its solution. Section 5 presents 
results : free-surface profiles, contours of kinematic and dynamic variables and local 
force balances over subdomains, all organized to illuminate how the leading design 
and operating parameters affect the flow. 

2. Prototype slide coater 
Even when most of the flow is virtually two-dimensional, edge effects make it 

three-dimensional because slide coaters are finite in width. Irregularities of the web 
surface cause three-dimensional and time-dependent flow. High deformation rates 
near the wetting line may give rise to non-Newtonian stress there even when 
otherwise the liquid seems Newtonian. Variations in surface composition, par- 
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ticularly where free surfaces are being rapidly extended as near the wetting line, may 
cause surface-tension gradients. All these complications and yet others we leave to 
sequels and here narrow attention to the system of figure 2. 

The relevant Navier-Stokes system is, in dimensionless form, 

R e u - V u  = V-T+3/cos(a+/3)f, ( 1 )  

v . u  = 0,  (2 1 
with traction, impenetrability and no-slip boundary conditions : 

1 dt  
n - V T  = --+pan, 

Ca ds 
at free surfaces, (3) 

nsu = 0, at free surfaces, (4) 

u = us at solid surfaces ( 5 )  

(the region near the dynamic apparent contact line is an exception to ( 5 )  : see below). 
u is the velocity measured in units of U = q/h,  = [pgq2cos (a+/3) /3p]f ,  the average 
velocity of the fully developed film on the slide; length as in V is measured in units 
of the thickness h, = [3pq/pg cos (a  + / 3 ) ] $  of that film, q being the volumetric flow rate 
per unit width, p the gravity-web angle, a the web-slide angle, and g the gravitational 
acceleration ; f = -sin pi- cospj is the unit vector in the direction of gravity ; i and 
j are the unit vectors in the directions normal and parallel to the web. The liquid 
properties are density p, viscosity p, and surface tension cr, The stress tensor is 
T = -pi+ [Vu+ ( V U ) ~ ] ,  where p is the pressure and / the unit tensor. Both stress 
and pressure are measured in units of pq/h;.  Re = p q / p  is the Reynolds number, 
Ca = p U / u  the capillary number, pa the ambient pressure, and us the velocity of solid 
boundaries. n is the local unit normal to the boundary, t the local unit tangent, and 
s the arclength along the boundary. The curvature of the boundary is then dtlds. 

Conventional fluid mechanical theory would allow no slip between liquid and solid 
(equation (5 ) ) ,  but were this strictly true a t  the dynamic wetting line the drag force 
on the substrate would be unbounded and coating would be impossible (Huh & 
Scriven 1971). Such singularities usually signal failure of one or more hypotheses of 
the model. No slip is the main suspect here and air entrainment its likely accomplice ; 
but there are other suspects too : non-Newtonian behaviour of the liquid due to high 
rates of strain or long-range intermolecular forces (electrostatic and dispersion) that 
in the guise of disjoining phenomena take on special importance in the thin films that 
underlie an apparent contact line; cavitation due to very low pressures and high 
viscous dissipation. I n  this paper we employ near the wetting line Navier’s (1827) 
boundary condition that makes the flux of momentum tangential to the wall 
proportional to the velocity discontinuity, as formulated earlier (Silliman & Scriven 

pSlip is the slip coefficient and t, and n, are the unit tangent and unit normal to the 
solid surface. For the present purpose is an empirical parameter, sensitivity to 
which must be tested. Equation (6) makes the singularity integrable but implies zero 
velocity a t  the contact line. This result is inconsistent with macroscopic observations 
(Burley & Kennedy 1976) that  reveal no deceleration of the liquid approaching the 
wetting line. Recent laser-Doppler velocimetry measurements (Hens & Mues 1988), 
however, support the idea of a velocity discontinuity and the hypothesis that it is 
caused by an invisibly thin film of entrained air that rapidly breaks down (Miyamoto 
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& Scriven 1982; Miyamoto 1986). An alternative is to assume no slip at  the 
macroscopic scale ; this gives rise to a discontinuous velocity field at the wetting line, 
but such a device can be handled with special techniques developed in the fracture 
mechanics literature for handling singularities (e.g. Bathe 1982, p. 226). 

The angle of contact between the liquidlair interface and the solid surface is also 
needed as a boundary condition on the interfacial shape at the wetting line: 

(7) 

K. N. Christodoulou and L. E. Xcriven 

nd n, = cos ed. 

Here, nd and n, are the outward unit normals at  the wetting line to the visible free 
surface and the solid surface respectively. However, the apparent contact angle Od is 
seen to vary with the flow field and surface properties in a still poorly understood way 
(Burley & Kennedy 1976; Gutoff & Kendrick 1982). Here it is employed as an 
empirical parameter, sensitivity to which must be tested. 

Far upstream on the slide the flow relaxes to almost fully developed film flow: 

h = 1, u = 3(y-$#), v = 0. (8) 

In practice, (8) are imposed at a finite distance (ordinarily 10ho-15ho) upstream from 
the die lip at  a location called the inflow boundary. Similarly, far downstream on the 
web the flow satisfies the following asymptotic conditions of zero traction and free- 
surface slope in the streamwise direction : 

n . T =  0 or n n : T =  0, t , x v  = 0; t = t , .  (9) 

Here t is the unit vector tangent to the free surface at  the outflow plane, t ,  is the unit 
vector parallel to the web, and n the unit vector normal to the outflow plane. 
Equations (9) are imposed as natural boundary conditions (second kind or Neumann 
conditions) because these prove preferable to essential ones (first kind or Dirichlet 
conditions) that specify the asymptotic velocity and free-surface position. This is 
also done at a finite distance downstream of the wetting line at  a location called the 
outflow boundary. Both inflow and outflow boundaries are artificial and sensitivity 
of solutions to their locations must be tested. 

The lip of the prototype coating die is taken to be unwettable by the coating liquid 
and so the lower meniscus is pinned at the edge, i.e. the static contact line locates 
there. This essential condition on the free-surface location overrides the kinematic 
equation there and no static contact angle is needed. The equally important case of 
a freely locatable static contact line that makes a prescribed static contact angle is 
treated in a sequel (Christodoulou & Scriven 1 9 8 9 ~ ) .  

3. Asymptotic solutions for slide and web regions 
Far upstream on the slide and far downstream on the web the flow relaxes to 

almost fully developed film flow. The governing equations can be simplified and even 
solved analytically there (Ruschak 1978 ; Higgins & Scriven 1979 ; Kheshgi & Scriven 
1979). Those analytical solutions can in turn serve as natural boundary conditions at  
the inflow and outflow boundaries. In this way the computational domain can be 
shortened and the cost of the finite-element analysis reduced without loss in 
accuracy. 
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3.1. Flow on the slide 
The NavierStokes equations and boundary conditions with the scaling in $2 take 
the form (Ruschak 1978): 

Here x and y are parallel and normal to the slide surface. For small slope u - 1 and 
w - h, u. On the assumption that each y-differentiation of an independent variable is 
of order unity, whereas each x-differentiation is of order lh,l 4 1, system (10) becomes 

Re (uu, + wu,) = -p, + u,, + 3, (114 

0 = -py-3tan(a+P),  u,+wy = 0, (lib, c) 

p+K/Ca = 0, uy = 0, w = h,u (y = h), ( I l d ,  e , f )  

u+~(Y-$J'), v+O,  h + l  ( X + - O O ) ,  (11% h, i) 

u = 0, w = 0 (y = 0). ( I l j ,  k) 

p, = -~,/Ca+3tan(a+/3)h,. (12) 

From (11 b, d )  it follows that 

Substituting p, from (12) into (1 1 a), introducing the following approximate velocity 
profile, which satisfies (1 1 e i )  : 

u = 3/h[y/h-+(y/h)*I, (13a) 

w = y/hh,u; (13b) 

and integrating across the liquid film results in an ordinary differential equation for 
the film profile (cf. Higgins & Scriven 1979): 

3Ca -1 [ + 1 
h3 
- -Re- 2 h, + h,tan(a+p) 

5 h3 
capillary streamwise viscous streamwise cross-stream 

pressure gravity shear momentum gravity 

gradient force at wall convection force 

Linearizing (14) for small deviations E = h - I 4 h, from the fully developed film flow 
far upstream on the slide yields 

E,,, + 3Ca[iRe - tan (a + P) ]  E ,  + 9Cas = 0 (15) 

E = 0, E ,  = 0 as x+-m (far upstream). (16) 

along with the boundary conditions 



328 K .  N .  Christodoulou and L. E .  Scriven 

FIGURE 3. Solution of asymptotic equation far upstream on the slide, E = eoexp(yz) C O S ( ~ Z + $ ) .  

The solution of (14) that  satisfies (15) is 

E = EOexp(-yx)cos(Sx+$). (17) 

The constants y and 6 come from the flow parameters Cu and Re: 

= +(A fB), S = +1/3(A -B),  (18) 

(19) where A ,  B = { - ZCu f [ ($Ca)2 + [QCu Re - Cu tan (a + /3)I3]i}i, 

and E~ and 4 are determined from the thickness and slope of the film at the place 
chosen to be x = xo (see figure 3). Taking this point on the inflow boundary of the 
two-dimensional flow domain ($4) is the key to matching the analytical and 
numerical solutions. 

According to (17) there is a train of standing waves decaying in the upstream 
direction when the square-root in (19) is real. It is instructive to examine the form 
of this solution a t  various limits of the parameters and to compare i t  with other 
solutions in the literature. When inertial and cross-stream gravitational terms in (14) 
are neglected, (17) becomes 

E = e0 exp [ + ( g ~ u ) h l  cos [+ 4 3  i(9Cu)ix + $1, (20) 

which is Galehouse & Colt's (1984) result. 

for long distances upstream. The wavelength can be estimated from 
As Re rises the decay rate y becomes small and the train of standing waves persists 

x 2n when Re 3 1.  
2n A = -  
6 ($%Re); 

Hence the wavelength shortens as the Weber number, the product Ca Re = pqU/a 
rises, i.e. as inertia swamps capillary pressure. 
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3.2. Flow on the web 
A similar analysis of flow on the web, with the same scaling and the approximate 

h,,, = 3Ca [ 'OSp + (L- %) +A& h, (%-!?) - h, 1. (23) cos(a+P) h3 h2 h h3 cos(a+P) 

Linearizing (23) for small deviations E = h- t 4 t from the final film thickness t far 
downstream on the web yields 

ex,, + ca  [ + ~ e  (f - 7) + cos sinp (a+P) ] eX+3Ca (; T-T '7) E = O .  (24) 

t of course satisfies (23) when the derivatives are all zero: 

cosp 1 u-  
cos(a+P) t 3  t 2  

O =  +--- 

In  coating operations the last two terms typically dominate, and so U, x l / t .  The 
solution of (24) then decays exponentially downstream : 

h = t+Cexp[(A+B)x]. (26) 

Here A,  B E { - ab [$b2 + &a3$}:, (27) 

and C can be determined if the thickness of the film a t  a point x = xo, is known (see 
figure 4). When inertia and the cross-stream gravity component are neglected, 

A x O ,  B x ( T ) ,  3 ~ a  f 

which is another result of Galehouse & Colt (1984). 

4. Finite-element solution for the bead region 
The bead region is bounded by two free surfaces, fits no standard coordinate 

system and cannot easily be made to do so by a global transformation. These aspects 
and the nature of the boundary conditions make the Gderkin/finite-element 
technique, suitably augmented to handle free boundaries, the method of choice for 
solving the system (1)-(9). 

4.1. Free-surface parametrization 

The free surfaces are parametrized by their location along conveniently placed spines 
(Kistler & Scriven 1983). Here the spines are taken to  be straight lines, each defined 
by a base point & and a direction e,, as indicated in figure 5 .  Along a spine the 
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FIGURE 4. Solution of asymptotic equation far downstream on the web, E = 6,exp [ - IA +BI 21. 

FIGURE 5. Free-spine parametrization and isoparametric mapping. 

distance from the base point to a boundary is the latter’s local coordinate (internal 
surfaces can be parametrized in the same way). In figure 5 ,  h& and hg stand for the 
locations of the top and bottom boundaries on the ith spine. The location xk of the 
node k ( i ,  j) under a free surface and on the ith spine becomes a function of the free- 
surface parameters : 

xk = xg+[hb+zd(h&-hg)e , .  (30) 

Wi are the prescribed proportions according to which nodes are spaced between the 
base point and the free surface. In addition, the base points xg and the base vectors 
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(a m 
FIQURE 6. Finite-element tessellations used : type A when bead is thin, 

type B when bead is thick. 

e, may be functions of other parameters, such as the location x, of the dynamic 
wetting line on the web. On solid boundaries, i.e. at the slide and the web, hk are 
known. At each intersection of a spine with a free surface, however, the local 
coordinate becomes an unknown coefficient that must be found simultaneously with 
others of its kind and those that come from the basis function expansions of velocity 
and pressure fields described below. 

A technique related to the free-spine parametrization is the method of boundary 
supports of Ruschak (1980), who in essence employed spines of fixed slopes and base- 
point locations. The free-spine parametrization used in this work is more flexible as 
it allows not only the height along each spine but also its slope and base-point 
location to change following the motion of free boundaries. As a consequence larger 
deformations of the boundaries of the flow domain can be handled before the 
parametrization breaks down due to excessive finite-element distortion. 

Two finite-element tessellations were used here depending on the thickness of the 
coating bead: see figure 6. Type A tessellation was ordinarily used except a t  high 
( >50) Reynolds numbers and/or low (< 4) dimensionless web speeds. At these 
conditions the bead is so thick as to require more resolution in the crossflow direction 
and then tessellation B was used. 

Close to the bead in type-A tessellation it proved convenient to require spines to 
pass through a single point (Xl, Y1) so that they turn gradually from being normal 
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to the slide to being normal to the web. In the rest of the computational domain they 
were made orthogonal to the solid wall to facilitate the imposition of boundary 
conditions at  the inflow and outflow planes. One spine was made to pass through the 
dynamic wetting line, wherever that was. The base point of that spine was forced to 
shift with the wetting line as the location x* of the latter changed from iteration to 
iteration. Consequently x* became a parameter in the base-point location and 
direction of each and every spine in the bead region and associated web region. This 
added dependence of nodal locations on the dynamic-wetting-line position had to be 
taken into account in order to calculate correctly the Jacobian matrix (see 54.3). 
Type-B tessellation had an additional region in the bead, where spines were required 
to pass through a second polar point (X2,Y2) taken at the intersection of the 
extrapolation of the slide surface with the web surface. The base points in the bead 
were taken on a straight line AB passing through the slide edge; its slope was fixed 
during iteration but was manually controlled as parameters varied so that nodal 
points always remained inside the flow domain. 

4.2. Expansion in basis functions and isoparametric m p p i n g  
Spines and nodes along them were so managed as to tessellate the bead region into 
quadrilateral subdomains, or elements, each bounded by a pair of straight sides and 
a pair that could be curved. Finite-element basis functions were used to approximate 
the solution of the Navier-Stokes system; the functions of choice were 'nine-node' 
biquadratic ones qS for velocity and 'four-node' bilinear ones $k for pressure. This 
combination is a standard 'mixed interpolation ' (Huyakorn et al. 1978) : 

The polynomial basis functions qP and I,P were constructed on a standard ( E ,  3 )  
square domain. This square was mapped into each of the deformed quadrilateral 
elements in the flow domain by the isoparametric mapping 

(33) 

where x1 are the nodal locations and h the entire set of free-surface parameters. This 
map allowed convenient evaluation of the free-surface location, its unit tangent 
vector t and normal vector n: 

x = z x,(W 91(E, T )  

as well as the derivative of any weighted residual equation with respect to the free- 
surface position, as is called for by the Jacobian. 

The coefficients ut, p k ,  x,(h) were determined by requiring that the Galerkin 
weighted residuals vanish : 

[ (Reu.Vu-SStf)~t+VqP.f ldA- (35) 

(37 
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M, C and K stand for momentum, continuity and kinematic respectively. Essential 
boundary conditions were imposed by replacing the corresponding weighted residual 
equation with the desired velocity or free-surface specification. Natural boundary 
conditions were imposed through the boundary integral 

I, n -  T# ds 

in (35) ; this was obtained by applying the divergence theorem to the V . T term of the 
momentum equation (1) after it was weighted by fl and integrated over the domain 
A .  For example, the stress boundary condition a t  the free surface was imposed by 
inserting the right-hand side of (3) into the traction boundary integral of (35). 
Natural end conditions on the free surface were imposed through the end terms 
obtained by applying the surface divergence theorem to the traction boundary 
condition (Ruschak 1980) : 

1 dSbi 1 
[(Re u - Vu-iYstf) fl + V@- r ]  dA + - t - ds -- (@t, -@to) .  (38) C a l A  ds Ca 

The end-point terms in (38) are shell forces due to surface tension. Their directions 
to and t ,  had to be specified at inflow and outflow boundaries as well as a t  wetting 
lines. This procedure has worked well a t  static separation lines that are free to move 
along a solid boundary (Christodoulou & Scriven 1989~) .  But for a wide range of 
dynamic contact angles that might be imposed its use at the dynamic wetting line 
proved to prevent the iteration process from converging on a solution. And even 
when the process converged the dynamic contact angle of the solution often differed 
substantially from the angle that was to be imposed. So far the only viable 
alternative has been to impose the dynamic contact angle as an essential boundary 
condition; then, (7) becomes the extra equation required to find the dynamic- 
wetting-line location z*. As viscous normal stress overwhelms capillary pressure, i.e. 
as capillary number Ca = p U / u  becomes large, the surface region in which curvature 
is important shrinks to a narrowing neighbourhood of the dynamic wetting line and 
ultimately it becomes unreasonable to impose a dynamic contact angle at all, as 
Kistler found in his analysis of curtain coating. I n  this singular limit, the kinematic 
boundary condition (4) should replace (7). At the edge of the die the kinematic 
condition was replaced by an essential condition on the free-surface location. 

Where the slip boundary condition (6) applied (ordinarily in the element adjoining 
the wetting line) the boundary integral 

in (25) was split into its tangential component 

and the normal component 
r 

J (nsn,:T)nsflds 
CA 
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a t  the solid surface. The tangential component was then replaced by the right-hand 
side of (6) and the momentum residual became 

RF = lA [(Re U S  VU - S t f )  qP + V# - r ]  dA + /3& t ,  - (u - us) t ,  # ds s,, 
+ J 2 A  (nsn,: T)%#ids. (39) 

The normal component (last integral in (39)) was evaluated by means of the basis- 
function expansion of the solution. 

At the location chosen to be the inflow boundary the asymptotic film thickness and 
velocity profile (1  1 g, h, i) could replace the kinematic and momentum residuals. 
Alternatively, boundary conditions of the third kind at both the inflow and outflow 
boundaries can be derived from the analytical solutions of the asymptotic film flow 
equations (17) and (26). However, this proved unnecessary a t  the outflow boundary : 
owing to downstream convection, disturbances originating downstream decay within 
a short distance, on the order of the film thickness, in the upstream direction (Wilson 
1969). For the same reason disturbances originating upstream persist a greater 
distance downstream, on the order of the film thickness multiplied by the Reynolds 
number. Consequently only the asymptotic solution a t  the inflow boundary was 
incorporated. This was done by discarding the momentum residuals (35) at nodes on 
the inflow boundary in favour of the asymptotic velocity profile (13); the latter 
depends only on the free-surface position at the inflow plane and its derivative in the 
direction of the slide surface. Hence, one more equation was needed to complete the 
set. The kinematic condition (normally associated with that free-surface position) 
could not be used because it was already satisfied by (13) ; instead, the approximate 
normal stress condition (1  1 d )  was used. An expression for the curvature K consistent 
with the assumptions that led to the linear film flow equation (14) can be found by 
differentiating (17) twice and eliminating e0 and 4 among the expressions for 6, 6, and 
Ex,  : 

where y and 6 are given by (18). Hence 

(40) 

(41) 

E x ,  + 2ye, + (y' + 8 2 )  E = 0, 

K z e,, = -2yE,-(y2+62) E .  

From ( l i d ) ,  (41) and from the definition of e = h- 1 i t  follows that 

(42) 
1 

p - [ Zyh, + (7' + 6') (h  - 1 )] = 0. 

We replaced (37) with (42) at the infiow plane. 

4.3. Evaluation of the basis-function coeficients 
The integrals in (35)-(39) and (42) involve the unknown coefficients of the basis 
functions in (31)-(33). Area integrals were evaluated by nine-point Gaussian 
quadrature ; line integrals, by three-point quadrature ; this left a system of algebraic 
equations for the vector of coefficients x = [u,p,  h] = [u i ,pk ,  h,]. The system was 
solved by Newton iteration (or a modified procedure) from an initial estimate do): 

(43) L\x(k+ l )  x ( k + l )  - x ( k )  = - w J-1R x(k) ( ) ?  

where R = [RF, RE, Rf] is the vector of weighted residuals, and o a relaxation factor 
that is unity in Newton iteration. 



The $uid mechanics of slide coating 335 

The entries of the Jacobian matrix were evaluated by Gaussian quadrature of 
formulas derived analytically for Jpq = aR,/ax,. Actually, the entries were built UP 
as sums of contributions from the weighted residuals calculated with basis functions 
associated with a single subdomain, or element. These contributions constitute a 
submatrix known as the element-level Jacobian, which for an element adjoining the 
free surface has the form 

aRC/au 0 aRC/ah . 
aR‘/au aRM/ap aRM/ah 

[ aRK/au 0 aRK/ah 

For any element that does not adjoin a free surface the bottom row is absent. 
Evaluating the entries aR/ah (last column) can be difficult because the weighted 
residuals depend on free-surface location through not only the integrands, but also 
the limits of integration. But if the residuals are written as integrals over the 
reference (5’7) square, correct differentiation becomes straightforward (Kistler & 
Scriven 1983). The correctness of the element-level Jacobian matrix was checked by 
numerically calculating derivatives in a few elements through a first-order 

aRt - R,(x +ce,) -R,(x) 
differencing formula : 

1 

(44) - _  
ax, E 

Here ej is the unit vector in the j t h  direction and E 6 1. 
The linear system (43) was solved by direct factorization of J with Hood’s (1976) 

frontal solver. The agreement of successive iterates to within a prescribed numerical 
tolerance (infinity norm of 

For Newton’s method to be fully effective computationally the initial estimate do) 
must fall in or near the ‘ball ’ of quadratic convergence rate. Once a solution is at 
hand for one set of parameters, continuation with control of the parameter change 
provides a suitable initial estimate for the next set of parameters. In this work first- 
order or sometimes zero-order continuation was used. 

First-order continuation, which usually admits larger parameter steps, starts with 

< was the criterion of a solution. 

where xiye, is the initial approximation to the solution at the new parameter value 
A + AA, x i f )  is the converged solution a t  the previous parameter value A, and ax/aA 

(46) 
ax aR 

is the solution of 
J-  = --. 

ah ah 

Since in the computation the LU decomposition of J is already available from the 
solution a t  the preceding parameter value, solutions of (46) for different right-hand 
sides could be obtained at little extra computational cost. 

What is crucial to this Newton/continuation strategy is the first solution, for 
which a start-up approximation x(O) is needed. Ways of constructing start-up 
approximations are discussed by Kistler & Scriven (1983) : often the construction is 
too rough for Newton’s method to succeed. Two start-up strategies were used in this 
work. The first was a block Newton algorithm which is actually a variant of the 
Picard iteration or successive approximation, as used by Silliman & Scriven (1980). 
Iteration was still starked as in (43) but with free-surface unknowns fixed (i.e. 
specified as boundary conditions). In  the second iteration free-surface unknowns 
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FIQURE 7. Continuation from curtain to slide coating. 

were ‘freed’ but velocity unknowns fixed. We proceeded in this way by keeping free- 
surface or velocity unknowns fixed in alternate iterations until they converged. This 
process, which does not require the full Jacobian, converges a t  a much slower rate 
than Newton iteration but sometimes has a much larger ‘ball’ of convergence. In 
particular, when the capillary number is great enough and the kinematic formulation 
is used - i.e. when the kinematic condition is used to update the free-surface 
unknowns - this particular Picard iteration usually succeeds, as explained by 
Silliman & Scriven (1980). 

The second start-up strategy was continuation from a related problem, a kind of 
‘ homotopy ’. A solution of a closely related equation system for the rather different 
configuration of a curtain coater was available from Kistler (1984). By successively 
converting much of the ‘ lower ’ free surface of the curtain to a slide wall, rotating the 
direction of gravity, and changing dimensions, the slide coater configuration was 
reached : see figure 7. Values of the under-relaxation factor w in the range 0.3 to 0.5 
in the first few iterations proved valuable in both strategies, for they allowed much 
larger incremental changes in parameters than the strict Newton/continuation 
strategy. 

The Jacobian matrix becomes singular a t  bifurcation and limit points. The former 
can be easily detected by monitoring the determinant det J as parameters are 
changed from case to case, i.e. along the solution family. This determinant changes 
sign at a branch point where one real eigenvalue of J becomes positive. However, we 
computed only two-dimensional steady flow fields, in which case bifurcation points 
are not generic (i.e. do not persist under perturbation of a second parameter) and 
hence are not easily encountered. The bead loses stability at limit points, and a t  Hopf 
bifurcation points. These are examined in forthcoming papers (Christodoulou & 
Scriven 1989b, c). 

4.4. Post-processing 
Streamline displays of the flow fields were constructed as contours of the stream 
function $(x, y), which was computed from the velocity field by solving the linear 

This we solved by the Galerkin/finite-element method with ~ ( x ,  y) expanded in the 
‘ nine-node ’ biquadratic basis functions. 

Contour plots of other kinematic and dynamic variables also facilitate the 
interpretation of the complex flow in the coating bead. When the finite-element 
representation of a variable is discontinuous at element boundaries - as are the 
representations of vorticity, shear stress and normal stress difference when velocity 
is expressed in the biquadratic basis - it can be made continuous, as we did, by the 
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smoothing algorithm of Chavez (1984), which produces single values f * a t  nodal 
points from f at Gauss points by minimizing the functional 

Thus f *  is the continuous and f the discontinuous approximation to the same 
variable. The minimization is equivalent to  the easily solved linear system : 

IA;14vf:U =i,f@idA, i =  1, . . .7n,  (49) 

where n is the number of nodes. 
To understand the dynamics of the complex flow it is valuable to see the relative 

importance of the forces a t  work - on each subdomain if not at every point (Orr & 
Scriven 1978). Moreover, any lack of balance of the forces is an indicator of error in 
the finite-element representation of the solution of the NavierStokes system (1)-(9). 
The gravitational G, inertial I, viscous V, and pressure P contributions to the 
integral momentum balance on a subdomain, or element, were evaluated from (ds is 
differential arclength of the element boundary) 

Re ( -n.uu) ds 

v -A , s ,  n .  [Vu + ( V U ) ~ ]  ds, 

1 P=- n.(-pI)ds.  
ICA 

The normalization factor A,, is the element area, most readily obtained from the 
Jacobian J of the isoparametric mapping : 

J-1 J-1 

The viscous V", pressure Ps, and capillary (surface tension) Cs contributions t o  the 
surface traction balance on the free-surface side of an element were evaluated from 

V' I 

Here the normalization factor s is the element-side length, which is also found most 
readily from the mapping (cf. (33)) 

1 

s = (xi+yi):d[. (53) 
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5.  Results and discussion 
The many dimensionless parameters of design and operation that must be specified 

to define a case of the prototype slide coating system are listed in table 1.  The results 
that follow illustrate the responses of the system to changes in parameters around a 
base case that is representative of certain practical systems: see table 2. 

Two tessellations of the bead region into elements - often referred to as ‘ meshes ’ 
or ‘grids’ (of corner nodes) - generated by the free-spine method were used. They 
were 21 x 3 and 36 x 4, and the base-case solutions from them differed by less than 
5 % in any basis-function coefficient. Nevertheless the more refined tessellation was 
retained to resolve better the flow field at higher Reynolds numbers. It leads to 1582 
equations ; each Newton iteration required less than two seconds of central processor 
time on the CRAY-1 or later the CRAY-2 at  the University of Minnesota (a midi- 
computer like a VAX could be used, but with less cost effectiveness). With the 
Newton/continuation method ($4.3), parameter changes were managed so that 
convergence was usually achieved in three to at  most five iterations (and proceeded 
at  a quadratic rate in the terminal stage). 

Figure 8 shows the computed velocity field and streamlines for the base-case 
parameter set. Evidently there are standing waves a t  the foot of the slide whose 
amplitude decays in the upstream direction. On the other hand the film thickness 
relaxes monotonically towards its asymptotic value in the downstream direction on 
the web. Both features were correctly predicted by the approximate analysis of $3. 
The predicted velocity field and streamline contours show the deceleration of the flow 
under the crest of the standing wave and the acceleration under the trough. The 
mechanism of the rapid film thinning there can be deduced by examining contours 
of kinematic and dynamic variables as displayed in figures 8 and 9. 

Upstream on the slide and downstream on the web the free surface is almost flat 
and the pressure virtually hydrostatic (figure 9a) in accord with the fully developed 
state of rectilinear flow there. The upper free surface is thus constrained by the slide 
surface and web inclinations. Hence the upper meniscus has to become concave in 
some region close to the foot of the slide and capillary pressure - the resultant of 
surface tension in the curved interface - gives rise to strongly subambient pressures 
there; this is accompanied by acceleration (figure 8b) and rapid film thinning. The 
latter provides the perturbation (E, in (17)) from the asymptotic thickness through 
which capillarity gives rise to standing waves that extend upstream. The deceleration 
of flow under the crest of the wave and the resulting pressure increase further 
localizes and intensifies the pressure gradient. The normal stress difference (figure 9b) 
is small in the shear flow on the slide but becomes highly positive (extensional) near 
the dynamic wetting line, where contours of pressure (figure 9a) and shear stress 
(figure 9 d )  evidence the well-known singularity. Contour lines of high vorticity 
(figure Q c )  signify the development of the Sakiadis-type boundary layer on the web, 
which was addressed by Hens & Boiy (1986). Downstream on the web the pressure 
excess and viscous stresses decay rapidly as the flow approaches almost solid-body 
translation (except for a small gravity effect). 

Figures 10 and 11 show how the balancing of forces acting a t  free surfaces and in 
the bulk shifts in the different regions of the coater. Upstream on the slide all free- 
surface forces are small (figure 10a). At the crest of the standing wave capillary and 
pressure forces balance each other, the normal viscous stress contribution being very 
small. As the trough of the wave is approached normal viscous forces are turned on 
but still capillary and pressure forces dominate. This indicates that the standing 
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Parameter 
Value Base case 

Final film thickness 
Web speed 
Pressure difference 
Clearance 
Viscosity 
Density 
Surface tension 
Dynamic contact angle 
Slide-web angle 
Web-gravity angle 

Pm 

Pa 
mm 
mPa s 

dyn/cm 
degrees 
degrees 
degrees 

m/s 

g/cm3 

h 30-200 
U W  0-5 
P b  M O O  

P 0.5-100 
L 0.1-0.4 

P 0.9-1.3 
U 20-70 
ed 14&160 
a W 8 0  
B @25 

115.3 

161.1 
1.67 

0.347 
8.717 
1.13 

70.1 
160 
60 
0 

TABLE 1. Dimensional parameters and representative values for a typical slide coater system 

Group Definition Base case 

Reynolds number 
Capillary number 
Pressure difference 
Clearance 
Draw-down ratio 
Dynamic contact angle 
Slip coefficient 
Slip length 
Slide-web angle 
Web-gravity angle 

Units 
Length 
Velocity 

25 

- 90 
0.0247 

0.358 
8.4 

0.01 
1 60 

One element 
6 0 O  

O0 

TABLE 2. Dimensionless parameters for the typical slide coater system 

wave (or wave system) is the viscocapillary effect found by Ruschak (1978) in his 
analysis of film flow into a quiescent pool. However, part of the film thinning and 
resulting pressure gradient must stem from the liquid withdrawal by the highly 
extensional flow in the bead, as indicated by the increase of free-surface curvature 
with increasing web speed (figure 12). Downstream of the trough (figure lob) viscous 
forces diminish but they grow again as the film levels and attains its asymptotic 
thickness on the web. At the same time capillary forces diminish with the curvature 
of the upper free surface. 

Figure 1 1  shows how the balancing of bulk forces shifts in the different regions of 
the coater. The gravity force points always downwards and is drawn first ; because 
it remains constant in the different regions of the flow it indicates the relative scaling 
of forces in each region. It is followed by the vectors of inertia, viscous and pressure 
forces as defined in (50). Upstream on the slide (figure l l a )  the inertia force is 
negligible ; gravity, pressure and viscous forces are of comparable magnitude but 
small. Under the crest of the standing wave the viscous force diminishes, as does the 
cross-stream velocity gradient there. Just before the locale of smallest film thickness, 
pressure and inertia forces are three to four times larger than the viscous and gravity 
forces. The pressure force, due mainly to capillarity, points downstream, i.e. from the 
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FIGURE 8. Kinematic variables of the base-case steady state: (a )  velocity field, ( b )  velocity field 
in the bead region, (c) streamlines. 

FIQURE 9. Contour lines of dynamic variables : (a )  pressure, (b )  normal stress difference along 
streamlines T~,-T,,,,, (c) vorticity au/ag-aav/ax, (d )  shear stress along streamlines T~, , .  
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P" 

FIGURE 10. Local (element) balances of free-surface forces: ( a )  on the slide, (b)  on the web. v": 
normal viscous force ; P 8  : pressure force ; C8 : capillary forbe. 

region of the convex upper free surface to the region of the concave upper free 
surface. The inertia force points upstream, i.e. its direction is opposite to the 
acceleration it stands for. In the bead region (figure 11 b )  all forces are significant 
except for gravity, which is small. On the web (figure 11 c )  inertia and viscous forces 
dominate whereas capillarity and pressure forces diminish as the outflow plane is 
approached. 

Surface pressure force is the difference between ambient and liquid pressure. Bulk 
pressure forces depend on the pressure gradients in the liquid. On the web the 
pressure is negative owing to the extensional flow there but nevertheless it is uniform 
across the film. Hence it gives rise to surface pressure forces but does not generate 
any appreciable bulk pressure force. 

5.1. Effect of dimensionless web speed 
The effect of varying the dimensionless web speed U ,  (or equivalently the web speed 
at constant feed rate) is shown in figure 12. Lowering U ,  lengthens the distance 
needed to grow a given thickness of boundary layer and thus raises the liquid 
inventory in the bead. Moreover, the curvature of the upper meniscus falls and the 
final film thickens. Obviously this process cannot be continued to zero web speeds. 
An approximate lower limit of operability for the web speed can be determined from 
(25). This can be written as 

t 3 -  - t + - = o ,  (IjR) : (54) 
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V 

\ 

FIGURE 1 1 .  Local (element) balances of bulk forces: (a) on the slide, ( b )  in the bead, (c) on the 
web. G :  gravity force; I :  inertia force; V: viscous force; P: pressure force. 

FIGURE 12. Effect of dimensionless web speed: (a) free-surface profiles, (b )  critical state at low 
web speeds. 
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/"= - 1 8  I 

FIGURE 13. Effect of vacuum: (a) free-surface profiles, ( b )  heel formation at high vacuum. 

c being the ratio cosp/cos (a+P). For all practical web-slide configurations - 
downward inclined slide and upwards inclined web - the angles a and p satisfy 

0' < a < 90' 

and -a < B < 90'-a 

or 0' < a+p < 90°, 

so that c 2 0. Then (54) has two positive admissible solutions when U, is larger than 
( F ) k  The larger of the two predicted film thicknesses corresponds to an obstructed 
rising film (cf. Kistler 1980). The two roots become equal when U z  = (5);~. For the 
base case examined here Ug x 2.3. This limit, however, arises in nothing more than 
a mass conservation principle and the assumption of a parabolic velocity profile. It 
is a lower bound to the actual operability limit of two-dimensional states which is 
shown in figure 12(b) and corresponds to U,  w 3.7. This was found by techniques 
that we shall be reporting elsewhere. Evidently recirculation regions also appear at 
low web speeds. 

5.2. Effect of vacuum 
By increasing the vacuum applied on the lower meniscus the curvature of both the 
upper and lower menisci increases as the wetting line is sucked into the vacuum 
chamber: see figure 13(a). Again the length of the boundary layer on the web 
increases, the liquid inventory decreases, and the thinning under the trough of the 
wave becomes more pronounced. Above a certain value of applied vacuum the lower 
meniscus forms a heel which the main liquid stream avoids by driving a small eddy 
near the edge of the die (figure 13b). The Newton iteration converged progressively 
more slowly and finally failed altogether as the vacuum was increased further. 

When the gap is narrow - less than 0.5 mm - the results do not make clear whether 
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the loss of convergence a t  high vacuum is due to the presence of a limit point in the 
solution family or to inadequacy of the grid generation scheme, i.e. to the straight 
spines we employed in this work to parametrize effectively both free surfaces in the 
presence of a pronounced heel. At larger gap widths, however, the effect of gravity 
becomes significant and the loss of convergence is known to be due to the presence 
of a fold (turning point) on the solution family (Christodoulou & Scriven 19896). 
Nevertheless, when the cut-back angle y (see figure 2 )  subtended by the two solid 
surfaces that form the lip is not too acute, the liquid wets the lower side of the die 
long before the vacuum is raised to the point a t  which the lower meniscus becomes 
so curved as to make the straight spine technique inapplicable (Christodoulou & 
Scriven 1989a). This is a consequence of the Gibbs inequality condition which 
appears to apply also in dynamic situations (Kistler 1984). 

By decreasing the vacuum almost to zero, another operability limit of steady two- 
dimensional states is reached. In this limit the bead loses stability to time-periodic, 
oscillatory states known as the ‘barring ’ instability. Because two-dimensional, 
although unstable, solutions exist beyond the critical point and the determinant of 
the Jacobian matrix (available from the LU decomposition) does not change sign, 
the detection of such limits requires a separate stability analysis (Christodoulou & 
Scriven 1989 6). 

That the range of stable coating bead operation can be widened by imposing a 
pressure differential across the bead was first pointed out by Beguin (1954). He found 
that a small pressure differential - for instance, from 0.1 to 5 in. of water vacuum - 
applied to the lower meniscus appeared to prevent air entrainment, bead break-up 
and oscillation. 

5.3. Effect of dimensionless gap width 
The coater is usually put into operation by establishing a defect-free flow on the slide 
and then bringing the slide close enough to the coating roller that the liquid makes 
contact with the fast-moving web. Conversely the operation is stopped by increasing 
the distance (gap) between the slide and the roller. For a continuous operation it is 
essential that the gap be wide enough to allow the passage of splices without moving 
the slide away from the surface being coated (Beguin 1954). 

Figure 14 illustrates computed predictions of the effect of changing the gap width. 
At narrow gaps (L, = 0.072 = 0.2L0) the static and dynamic contact-line singularities 
are close to each other, high negative pressures arise and the lower meniscus is almost 
straight. As the gap is widened, however, gravity becomes more and more important 
and causes the lower meniscus to bow downwards. At L, = 1.08 = 3L0 there is already 
a small region of slowly recirculating liquid in the lower part of the hanging bead. It 
grows larger as the gap width is increased further. An operability limit is eventually 
reached when the combined effect of vacuum, shear stress exerted by the web, and 
surface-tension force, cannot support the weight of the liquid bridge (Christodoulou 
& Scriven 19896). By making the web horizontal one could widen the gap at will - 
while decreasing the vacuum, but then the slide coater becomes a curtain coater 
(Kistler & Scriven 1983), a configuration that allows large separation of the static 
and dynamic singularities. 

5.4. Effect of liquid inertia 
Figures 15 and 16 show the effect of varying Reynolds number. This is not equivalent 
to a mere change in feed rate q, which would also change the dimensionless web 
speed, dimensionless gap width and capillary number (table 2) .  The wavelength of 
the standing waves at the foot of the slide becomes shorter and they decay slower 
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FIGURE 14. Effect of gap width on free-surface profiles and flow field. 

345 

FIGURE 15. Effect of Reynolds number free-surface profiles. 
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FIGURE 16. Effect of Reynolds number on flow field (streamlines). 

upstream, a fact that was also predicted by the asymptotic lubrication-type analysis 
of $3. The film thins less just upstream of the bead because increasing liquid inertia 
swamps capillary pressure. 

As Re is increased, convective effects dominate and the discretizations used 
become inadequate to resolve the various features of the flow field. This is clearly 
shown by local force balances (figure 17) which do not close a t  Re = 35. Further 
refinement was not attempted here because we judged that refinement would be 
inefficient without some adaptivity, i.e. tailoring to the features to be resolved. 

The calculations also reveal how recirculation zones can arise on the slide, a 
deleterious feature that had been detected in flow visualization experiments 
(Schweizer 1988). These zones (eddies) grow larger as Re is raised and as slide 
inclination and web speed are lowered (figure 18). At those conditions there is a large 
inventory of liquid in the bead requiring a different mesh design in that region (figure 
6). 

Streamlines in figure 18 show multiple vortices, in agreement with experimental 
results (Schweizer 1988). One recirculation region appears on the slide under the crest 
of the standing wave. Because of the local thickening of the liquid film there the flow 
decelerates in the streamwise direction and separates a t  the slide wall. On the other 
hand a t  the foot of the slide a jet-like layer separates from the wall and free surface, 
drives two vortices there, and impinges on the web. There it splits into two streams 
as in flows of stagnation type (figure 18b). The lower stream flows downwards, 
opposite to the web motion, and confines close to the wall the boundary layer that 
would otherwise start growing right from the dynamic contact line. Ultimately it 
changes direction close to the contact line and feeds the boundary layer which, past 
the stagnation point, grows rapidly to reach the free surface. 



The $uid mechanics of slide coating 347 

FIQURE 17. Local (element) force balances do not close at Re = 35. 

Recirculation zones are dangerous because in them the rate of strain is relatively 
low and the residence time infinitely long, except for three-dimensional effects that 
are always present and generally cause some sort of discharge - often intermittent 
and local. If long residence alters the liquid the consequence can be coating defects. 
The core of a recirculating zone is a low-pressure region and this is another hazard, 
for bubbles and other low-density particles can lodge there causing flow mal- 
distribution, especially if they coalesce or floc before being discharged. With proper 
design of the slide wall profile it may be possible to avoid the flow separation and 
formation of recirculating regions. For example, one could find the shape of slide that 
would maximize the minimum shear stress on the wall and the minimum particle 
speed along the free surface. This of course would require treating the wall surface 
itself as a free boundary - an almost trivial extension of the present model - whose 
position is governed by the optimization conditions. 

5.5. Effect of capillarity 
The fact that the standing waves are due mainly to capillarity, i.e. the resultant of 
surface tension in the curved meniscus, is vividly seen in figure 19. By increasing Ca 
- or decreasing surface tension - and keeping vacuum constant, the amplitude of the 
standing waves becomes smaller, their wavelength shorter, and the thinning of the 
film just upstream of the bead less pronounced. On the other hand, the curvature of 
the lower meniscus increases to compensate for the lower surface tension under the 
applied vacuum. 

5.6. Effect of slide and web inclination 
Slide and web inclination affect the action of gravity on the liquid layer and 
determine the angles at which surface tension acts at  the upper meniscus. Figure 20 
shows that by increasing the slide-web angle from 60" to 75' (or equivalently 
decreasing the slide imlination from 30" in the base case to 15") the curvature of the 

12 FLM 208 
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FIGURE 18. Flow field at high Reynolds number (Re = 88): (a) streamlines, 
( b )  velocity field in the bead region. 

FIGURE 19. Effect of capillary number p V / a  on free-surface profiles. 
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G 
FIGURE 20. Local (element) force balances at two different slide inclinations. 

upper meniscus decreases. In  the same figure local momentum balances over 
subdomains on the slide - scaled so that gravity force remains constant - show that 
inertial and pressure forces fall significantly whereas viscous forces diminish scarcely 
at all. 

The dual effect of slide inclination was pointed out by Burket et al. (1984). The 
component of the gravitational force parallel to the slide surface increases the 
momentum of the liquid as it impinges on the web and helps to overcome the forces 
that oppose deposition, namely surface tension, high shear due to the fast-moving 
web, and forces due to the air boundary layer along the surface of the web. The 
component perpendicular to the slide surface tends to  even the distribution of the 
liquid in the transverse direction and prevents the appearance of cross-web bars. 
Accordingly there is an optimum inclination of the slide with respect to  the direction 
of gravity. Matters of hydrodynamic stability of the microfluid dynamics and 
bifurcation of families of steady two-dimensional states to three-dimensional ones 
are involved, however, and these are not addressed in this work. 

The effect of the empirical parameters, dynamic contact angle Od and slip 
coefficient /?, are also important to examine. 

5.7. EfSect of dynamic contact angle 
At finite capillary numbers it is necessary to specify an apparent dynamic contact 
angle - usually very different from its static value - a t  which surface tension acts a t  
the dynamic wetting line. For the base-case calculation we used the value of 160". 
Decreasing the dynamic contact angle, i.e. increasing the apparent dynamic 
wettability of the web, causes the contact length to increase (figure 21). Again, the 
length of the boundary layer and hence the rate of momentum transfer by viscous 
forces from the web to the liquid increase, causing the curvature of the upper 
meniscus to  increase and the liquid inventory in the bead to decrease. 

12-2 
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FIGURE 21. Effect of dynamic contact angle on free-surface profiles. 

5.8. Effect of slip coegicient 
In most of the analyses reported here, slip was allowed, i.e. (6)  was used in place of 
(5) only in the first element a t  the wetting line. The need for a second empirical 
parameter is another manifestation of not accounting for the microscopic physics of 
the dynamic wetting process. Reducing the dimensionless slip coefficient &ip by a 
factor of 5 or 10 from the base case value of 0.01 had no effect whatsoever on the 
lower meniscus and barely perceptible effect on the upper free surface (figure 22). 
Below the value of about 0.007, however, the liquid velocity overshot in a region 
around the first node downstream of the wetting line; i.e. i t  reached values above the 
web speed. Further decrease of pSlip to lo-* and below had no effect on either the free 
surface or velocity distribution along the solid wall. Using such low values of &, to 
allow slip all along the web led to oscillations, or ‘wiggles ’, of tangential velocity with 
distance downstream, the first two or three peaks exceeding the web speed. These are 
plainly unphysical artifacts and stem from the abruptness of the change from zero 
tangential velocity imposed at  the wetting line to the value allowed by (6) at the first 
node. The lower the slip coefficient, the larger the second term in (39) and the closer 
the mean velocity of the liquid is forced to be to the web velocity; ultimately such 
a mean demands overshoot. 

The difficulty is that requiring zero velocity a t  the wetting line gives rise to a 
neighbouring boundary layer that the tessellation and basis functions used cannot 
resolve. Tests confirmed that the lower the slip coefficient, the more refined the 
tessellation needed. Such refinement ought to be accompanied by refinement of the 
equations in order to account for the physics of the dynamic wetting process a t  the 
scale that is to be resolved; this we shall describe in a future publication. An 
alternative is to allow for double-valued velocity (Kistler 1984), or even multi-valued 
velocity a t  the dynamic wetting line and to use special techniques developed for 
representing apparent singularities as at the tips of fractures in solids (Bathe 1982). 
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FIQURE 22. Effect of slip coefficient on free-surface profiles. 

Although these expedients do not resolve the physics of the displacement process 
they do avoid the excessive refinement needed with a macroscopic model that relies 
on slip. The insensitivity of the free-surface shapes and the macroscopic flow field to 
the value of the slip coefficient we attribute in a future publication to the 
specification of a contact-angle boundary condition. There, we assume that at the 
limit of zero slip, Huh & Scriven’s (1971) solution is valid. Although the total force 
exerted by the web on the liquid is predicted to be unbounded, a local momentum 
balance around the dynamic wetting line shows that it is a finite source of 
momentum. In fact the wetting line is a momentum dipole : momentum entering the 
liquid on the web surface is taken out on the free surface by the contact angle 
constraint. Because most of this transfer takes place in a small region in the vicinity 
of the contact line, the actual details are inconsequential to the macroscopic flow field 
away from that region. 

6. Concluding remarks 
The Galerkin/finite-element technique, spine parametrization of free surfaces, and 

full Newton iteration were successfully applied to describe steady, two-dimensional 
Newtonian flow in a slide coater. Slip and dynamic contact-angle parameters were 
used to relieve the non-integrable wetting-line singularity, and the lower meniscus 
was assumed to remain pinned at the edge of the coating die. Flow profiles show 
standing waves on the slide, rapid film thinning just upstream of the bead and 
monotonic approach to the final film thickness on the web, in agreement with 
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analytical solutions of the linearized film-flow equations. At high Reynolds numbers 
and/or low web speeds liquid accumulation in the bead increases and several 
recirculation regions appear, usually a deleterious effect for practical coating. Force 
balances over subdomains show that all four forces, namely gravity, inertia, viscous, 
and capillary forces, are important in the bead region, thus precluding simplification 
of the governing equations in most cases. 

The slide coater configuration sustains variations of the flow parameters by 
adjusting the contact length and the inventory of liquid in the bead and ensures that 
liquid is picked up by the web at  the same average rate as it flows on the slide; a 
steady state is thereby achieved. This regulatory mechanism cannot operate a t  any 
set of parameter values. Two operating limits with respect to two-dimensional 
disturbances were detected in this study, from loss of convergence of the 
Newton iteration. They were verified by eigenanalysis, i.e. linear stability theory 
(Christodoulou & Scriven 1989b). These are bead breakup at large gap widths and/or 
high vacuums and bead flooding at  high flow rates and/or low web speeds. 

Although free spine parametrization seems to work well for a wide range of 
parameters i t  becomes inadequate to parametrize highly curved meniscus shapes 
that accompany high back pressures. Moreover it requires the specification of a large 
number of mesh parameters (base points, spine angles, polar points) which themselves 
should be changed, ordinarily in an interactive manner, as parameters vary in order to 
maintain a non-singular discretization. These disadvantages can be avoided by using 
solution-adaptive techniques based on the solution of partial differential equations 
for optimizing the discretization (Thompson 1984 ; Christodoulou & Scriven 1989~). 

A second common mode of operation, in which the liquid wets the underside of the 
lip and the lower meniscus moves freely, was not considered in this work. Wetting 
causes more vortices to appear in the bead but also increases the bead height and 
allows higher vacuums to be imposed. This could greatly reduce the danger of air 
entrainment. Such considerations will be elaborated in a future publication. 

Full Newton iteration with its powerful by-product, the Jacobian matrix, sets the 
foundation for the stability analysis of slide coating flow. The ultimate goal of such 
an analysis is to understand - and thus to be able to control - the instabilities of thin 
liquid films as they are deposited and the non-uniformities of the film thickness that 
result : the ribbing instability that breaks the spatial symmetry of transversely 
uniform flow ; the barring instability that is caused by oscillating coating beads and 
generates coatings made non-uniform by cross-web bars ; and finally the air- 
entrainment instability that usually sets in a t  higher coating speeds. 

We thank Willy Van Abbenyen for helpful suggestions and for a careful reading 
of the manuscript. The work reported here was supported by grants-in-aid from 
Eastman Kodak Company and Minnesota Mining and Manufacturing Company, and 
most recently through the Center for Interfacial Engineering of the University of 
Minnesota. It was also supported by the University through a Graduate Dissertation 
Fellowship to K.N. C. and grants for computation from the Minnesota Super- 
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